Data Cloud

Export your organization's data to any data warehouse

How it works

Swarmia will send your data in the form of a Parquet file to your storage bucket, starting with Amazon S3. This data can then be pulled to your choice of data warehouse such as Snowflake. The full dataset will be refreshed every 8 hours to ensure there is recent enough data when the data is pulled.

Data being exported

The data exported currently is information about pull requests and deployments. The export contains two files pull_requests.parquet and deployments.parquet.

The pull request data contains:

  • Author information
  • Contributing teams
  • Investment categories
  • Pull request cycle time components: cycle time, progress time, time in review, and time in merge
  • Timestamps of PR events: first review time, first and last commit time, first review time, etc...

The deployments data contains:

You can read more of these metrics in 

Getting started

The setup requires you to have an Amazon S3 storage bucket to which Swarmia can push data.

Setup the integration

  1. Navigate to Data Cloud settings
  2. Insert your S3 bucket credentials
  3. Save the settings. After this, you can test the integration from the "Export" button in the UI.

Considerations for the S3 bucket

Swarmia requires the following permissions on an S3 bucket and folder to be able to upload the exports:

  • s3:GetBucketLocation

  • s3:PutObject

An example of AWS IAM Policy for the export bucket, where bucket name is the name of the bucket you provided use in the Data Cloud settings.

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
            "s3:PutObject",
            ],
          "Resource": "arn:aws:s3:::<bucket name>/*"
        },
        {
            "Effect": "Allow",
          "Action": [
                "s3:GetBucketLocation"
            ],
          "Resource": "arn:aws:s3:::<bucket name>",
            "Condition": {
                "StringLike": {
                    "s3:prefix": [
                      "*"
                    ]
                }
            }
        }
    ]
}

If you will access the data directly from the warehouse you most likely will need additional permissions. The following IAM Policy is the one recommended by Snowflake, which works then in both directions: Swarmia to upload and Snowflake to extract data from the same bucket.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:PutObject",
"s3:GetObject",
"s3:GetObjectVersion",
"s3:DeleteObject",
"s3:DeleteObjectVersion"
],
"Resource": "arn:aws:s3:::<bucket name>/*"
},
{
"Effect": "Allow",
"Action": [
"s3:ListBucket",
"s3:GetBucketLocation"
],
"Resource": "arn:aws:s3:::<bucket name>",
"Condition": {
"StringLike": {
"s3:prefix": [
"*"
]
}
}
}
]
}

Loading data to data warehouse

You can load data into various data warehouse systems using their native S3 connection methods. Here are list of some commonly used systems and links to their documentation.

Example: Loading data into Snowflake

With the following SQL template can get you started with Swarmia Data Cloud and Snowflake. Use this template to create needed Snowflake stages, file formats, and data tables to start making analytics based on Swarmia data.

Make sure to set up the access from Snowflake to the S3 bucket by following Snowflakes official instructions

-------------------------------------------------------------------------------------------
-- Create the integration to AWS S3 bucket and the Snowflake stages

-- Create the storage integration for the AWS S3 bucket you have configured with Swarmia Data Cloud.
-- To create the role follow the Snowflake instructions in
-- https://docs.snowflake.com/en/user-guide/data-load-s3-config-storage-integration#step-2-create-the-iam-role-in-aws
-------------------------------------------------------------------------------------------
 
CREATE OR REPLACE STORAGE INTEGRATION swarmia_data_cloud_s3
 TYPE = EXTERNAL_STAGE
 STORAGE_PROVIDER = 'S3'
 ENABLED = TRUE
 STORAGE_AWS_ROLE_ARN = 'arn:aws:iam::<id>:role/<role name>'
 STORAGE_ALLOWED_LOCATIONS = ('s3://<bucket name>');

-- Describe our Integration
DESCRIBE INTEGRATION swarmia_data_cloud_s3;
SHOW STORAGE INTEGRATIONS;

-- Create the parquet format for Swarmia data 
CREATE OR REPLACE FILE FORMAT swarmia_parquet
 TYPE = parquet;

-- Create the stage for the Swarmia exported data
CREATE OR REPLACE STAGE swarmia_data_cloud_s3_stage
URL = 's3://<bucket name>/'
STORAGE_INTEGRATION = swarmia_data_cloud_s3 -- created in previous step
FILE_FORMAT = swarmia_parquet;

-- View our Stages
SHOW STAGES;
DESCRIBE STAGE swarmia_data_cloud_s3_stage;
LIST @swarmia_data_cloud_s3_stage;

---
-- Create the target tables
---
-- Create table for pull requests
CREATE OR REPLACE TABLE swarmia_pull_requests (
    id                              text not null,
  github_number                   int not null,
author_id                   text not null,
   author_external_identifier      text not null,
    github_repository_full_name     text not null,
    pr_status                       text not null,
  labels                       text not null,
    owner_team_ids                  array,
    owner_team_names                array,
    investment_category_ids         array,
  investment_category_names       array,
    is_draft                        boolean,
    is_excluded                     boolean,
    github_created_at               timestamp,
    github_updated_at               timestamp,
    last_closed_or_merged_at        timestamp,
    first_commit_at                 timestamp,
    last_commit_at                  timestamp,
    opened_at                       timestamp,
    first_review_request_at         timestamp,
    first_reviewed_at               timestamp,
    first_approved_review_at        timestamp,
    last_approved_review_at         timestamp,
    cycle_time_seconds              int,
    progress_time_seconds           int,
    review_time_seconds             int,
    merge_time_seconds              int
);

CREATE OR REPLACE TABLE swarmia_deployments (
    id                             text not null,
    pull_request_ids               array,
    deployment_environment         text not null,
    deployed_at                    timestamp,
    fixes_deployment_id            text,
    fixes_version                  text,
    deployment_version             text,
    deployment_app_name            text,
    time_to_recovery_seconds       int,
    change_lead_time_seconds       int,
    time_to_deploy_seconds         int
);

-------------------------------------------------------------------------------------------
-- Load data into the Snowflake tables
-------------------------------------------------------------------------------------------

-- Remove any old data the table has to prevent duplicates
TRUNCATE TABLE swarmia_pull_requests;
TRUNCATE TABLE swarmia_deployments;

-- Copy the whole dataset into the target tables
COPY INTO swarmia_pull_requests
FROM @swarmia_data_cloud_s3_stage/v0/pull_requests.parquet
    MATCH_BY_COLUMN_NAME='CASE_INSENSITIVE';

COPY INTO swarmia_deployments
FROM @swarmia_data_cloud_s3_stage/v0/deployments.parquet
  MATCH_BY_COLUMN_NAME='CASE_INSENSITIVE';

-------------------------------------------------------------------------------------------
-- Query the data!
-------------------------------------------------------------------------------------------
SELECT COUNT(*) FROM swarmia_pull_requests;
SELECT * FROM swarmia_deployments;

-- Monthly average change lead time for 'Engineers'-team pull requests created since 2023 that have been deployed into production environment.
SELECT
    ROUND(AVG(change_lead_time_seconds))    AS change_lead_time_seconds,
    DATE_TRUNC('month', github_created_at)  AS month
FROM swarmia_deployments d
JOIN swarmia_pull_requests p ON (array_contains(p.id::variant, d.pull_request_ids))
WHERE array_contains('Engineers'::variant, p.owner_team_names)
    AND d.deployment_environment='production'
    AND p.github_created_at >= '2023-01-01'::timestamp
GROUP BY 2
ORDER BY 2 DESC;